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A B S T R A C T

Fuel treatments for reducing fire risk are necessarily tied to the landscape structure including forest

composition and configuration. Thus understanding the relationships between landscape structure and

burn severity is important for developing guidelines and management strategies for fire-resilient forests.

The goal of this study was to investigate the relationship between landscape structure as described by

spatial pattern metrics and burn severity at the landscape and class levels. In 2000, a mostly severe fire

burned 16,210 ha of dense forest located in Samchuck on the east coast of the Korean peninsula. Spatial

pattern metrics including patch density, largest patch index, mean shape index, area-weighted mean

shape index, Euclidean nearest neighborhood distance, and Shannon’s diversity index, as well as

topographic characteristics of slope and elevation, were correlated with burn severity based on delta

Normalized Burn Ratio (dNBR) assessments. Regression tree analysis was also carried out with the same

variables to avoid spatial autocorrelation and to reveal the relative importance of variables to burn

severity. The results of this study strongly suggest that both composition and configuration of the forest

cover patches are closely tied to burn severity. In particular, both the correlation analysis and regression

tree analysis indicated that the area of red pine tree forest cover was the most significant factor in

explaining the variance of burn severity. Topography and spatial configuration of forest cover patches

were also significantly related to burn severity. The heterogeneity of forests also had a significant

influence on burn severity. To reduce fire risk and increase the fire resilience of forests, forest managers

and agencies need to consider enhancing the heterogeneity of forests when implementing fuel treatment

schemes. However, such fuel treatments for landscape structure may only be effective under moderate

weather conditions.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Because fire has a profound influence on forest ecosystems and
human lives (Gustafson et al., 2004; Nunes et al., 2005) it has been
an important area of study for forest scientists, forest managers,
land use planners, and government agencies for decades. Fire has
been shown to have significant impacts on forest ecosystems,
resulting in alteration of the size, arrangement, and age structure of
vegetation (Collins et al., 2007; Delcourt and Delcourt, 1997; Lloret
et al., 2002; Turner et al., 1994; Wimberly and Reilly, 2007).
Conversely, forest composition and configuration influence fire
spread and severity (Collins et al., 2007; Stephens, 2001). Other
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variables have been shown to influence burn severity including
topography, disturbance history (Bigler et al., 2005), and weather
conditions (Collins et al., 2007; Pyne et al., 1996; Rothermel, 1972).
Despite the intensive investigations of those previous studies, our
understanding of the interactive relationship between burn
severity and environmental variables is still limited due to the
complexity and dynamics of the relevant variables.

Recently, much more attention has been given to the relation-
ship between landscape structure and characteristics of fire
including burn severity and spread (e.g., Bajocco and Ricotta,
2008; Kerby et al., 2007; Nunes et al., 2005; Ryu et al., 2007;
Wimberly and Reilly, 2007). For example, Ryu et al. (2007)
investigated the relationship between the burned area (BA) of the
Washburn Ranger District of the Chequamegon National Forest,
Wisconsin, United States, and landscape structure described using
spatial pattern metrics including largest patch index (LPI), mean
patch size (MPS), patch density (PD), patch size standard deviation
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(PSSD), mean shape index (MSI), area-weighted mean shape index
(AWMSI), and Shannon’s diversity index (SHDI). They reported a
strong tie between burned area (BA) and landscape structure and
concluded that the forest should be composed of numerous, small,
irregularly shaped, and different types of forest to mitigate fire
spread. From a landscape ecology perspective, forest structure can
be viewed as two-dimensional: (1) the composition and (2) the
configuration (McGarigal and Marks, 1995; Turner et al., 2001).
Both aspects are strongly tied to many characteristics of fire such
as spread, severity, fuel types, and fuel loading (González et al.,
2005; Kerby et al., 2007; Lloret et al., 2002; Nunes et al., 2005; Ryu
et al., 2007). Indirectly, landscape structure is also closely
associated with the composition and configuration of the post-
fire forest including plant regeneration and plant mortality
(Brown, 2000). Landscape structure is also tied to fuel treatments.
Effective fuel treatments must consider the spatial patterns of
forests that may interrupt the flow of high-intensity fire across the
landscape when the entire landscape is not planned for treatments
(Finney, 2001). Thus, understanding the relationship between
landscape structure and the characteristics of fire is critical to
managing or restoring forests that have resistance to fire ignition
and spread, as well as to enhancing the recovery of the ecosystems
of burned areas.

This study investigated, on a small scale, the relationship
between burn severity and landscape structure and topography in
South Korea. Our aim was to provide some basis for managing
forests for reduced susceptibility to fire. The rationale of the study
is that spatial patterns, including the composition and configura-
tion of forests in a landscape, dictate the fire susceptibility of
forests. Burn severity also partly depends on the spatial pattern of
forests with high or low fire susceptibility (Cumming, 2001;
Krasnow et al., 2009; Pyne et al., 1996). Furthermore, certain
aspects of all fuel treatments, forest management practices, and
restoration efforts are related to the spatial patterns of forests.
Therefore, knowledge of the relationship between the spatial
patterns of forests in landscapes and burn severity can be directly
applied to fuel treatment, forest management, and restoration
practices. Based on the factors and spatial patterns of forests
identified as being associated with burn severity, managers and
policymakers can reduce fire risks and enhance the resilience of
forests to fire. With these issues in mind, our specific study
question was as follows: is there a significant relationship between
landscape structure described by spatial pattern metrics and burn
severity derived from satellite imagery?

In 2000, a catastrophic fire burned 16,210 ha of dense forest in
Samchuck on the east coast of the Korean peninsula. Although
numerous studies have examined the landscape structure of
forests and various fire characteristics in Europe and North
America, relatively little information is available on the relation-
ship between spatial patterns of forests and burn severity in East
Asia, particularly in Korea. The fire event and subsequent collection
of large amounts of data provided an opportunity to examine the
complex relationship between landscape structure and burn
severity, as well as the ecological consequences of severe fire.

2. Methods and data

2.1. Study site and the Samchuck fire

The study area, located in Samchuck on the eastern coast of
Korea (Fig. 1a), has an annual average temperature and precipita-
tion of 12.1 8C and 1342 mm, respectively, with dry, windy
conditions in spring. The pre-fire vegetation in the area was
dominated by Japanese red pine (Pinus densiflora) forest and mixed
forest of P. densiflora and Mongolian oak (Quercus mongolica). At
the time of the fire, the forests had an average age of approximately
30 years and represented secondary succession following burning
during the Korean War in the early 1950s. Postwar regeneration in
the area was delayed due to fuel wood collection by local people. A
few rural residential areas are scattered through the lower
elevations, although no densely populated areas exist in the study
area. Stream systems are found mostly on the eastern and southern
sides of the area.

In 2000, a fire, severe in most areas, burned about 16,151 ha of
dense forest in the Samchuck area (378704200–3782003400N,
12981102400–12982203200E, Fig. 1(a). The fire spread from a
garbage-burning site near a residential area on 7 April and
continued to burn for 9 days. During the day, the maximum wind
speed was 26.8 m/s, and the minimum humidity was 7%. The dry
and windy weather conditions accelerated fire spread and made
suppression efforts ineffective. This burned area was designated as
a Long-Term Ecological Research (LTER) site and has been
monitored by the Korea Forest Research Institute (KFRI) since
2000 to investigate the ecological consequences of the fire and to
monitor the natural recovery process.

2.2. Description of spatial layers

The National Forest Classification Map was used to measure the
pre-fire landscape structure of the damaged area. This map is
paper-based and was digitized into a Geographic Information
System (GIS) for analysis. The National Forest Classification Map is
derived from satellite imagery and field data. The forest
classification is based on three criteria including tree type, age,
and sub-layers. In Table 1, the forest covers on the map were
initially classified into 50 categories and are now reclassified into
10 categories including mixed coniferous forest, broad-leaved
forest, mixed forest, planted Japanese red pine forest, planted
Korean white pine forest, planted pitch pine forest, Japanese red
pine forest, open forest, and agricultural land. Forests are classified
into a forest class when more than 75% of the areas are covered by a
single dominant tree type. Mixed forests are covered by multiple
tree types without a dominant tree type (i.e., <75% canopy cover).
The forest on the eastern side of the study area is relatively
homogeneous and dominated by pine trees, whereas the western
side shows a variety of forest cover types, as shown in Fig. 1d.

FRAGSTATS was employed to compute landscape structure
including composition and configuration before the fire (McGarigal
and Marks, 1995). FRAGSTATS is a spatial pattern analysis program
designed to quantify landscape patterns at the patch, class, and
landscape level. Literally hundreds of spatial metrics are available.
Their purpose is to obtain sets of quantitative data that allow a
more objective comparison of different landscapes for grouping or
differentiation (Antrop, 2000). According to McGarigal and Marks
(1995), most spatial patterns can be measured with composition
and configuration metrics. Composition refers to features asso-
ciated with the variety and abundance of forest cover types within
the forest without considering spatial character, placement, or
location of forest cover patches. However, composition metrics are
only applicable at the landscape level because of integration over
all forest cover types. Configuration includes the spatial character
and arrangement, position, or orientation of forest cover patches
within the class or forest. Configuration can be quantified in terms
of the spatial relationship of forest cover patches. These aspects of
configuration are measures of the placement of forest cover patch
types relative to other patches, other patch types, or other features
of interest (Turner et al., 2001). Because many of the numerous
spatial metrics are intercorrelated (McGarigal and Marks, 1995),
spatial metrics selected to describe landscape structure relevant to
burn severity must be based on clear study purposes and criteria.

Relevant spatial metrics associated with burn severity, as well
as the ecological functions of post-fire forests, can be identified



Table 1
Forest classes and the dominant trees in the study area before the fire.

Forest cover types Dominant trees Area (ha) Percentage (%)

Mixed coniferous forest Japanese red pine (Pinus densiflora) 0.9 0.01

Pitch pine (Pinus rigida)

Other coniferous trees

Broad-leaved forest Mongolian oak (Quercus mongolica) 455.9 2.82

Mixed forest Japanese red pine (Pinus densiflora) 2976.1 18.43

Mongolian oak (Quercus mongolica)

Others

Planted Japanese red pine forest Japanese red pine (Pinus densiflora) 0.3 0.01

Planted Korean white pine forest Planted Korean white pine (Pinus koraiensis) 867.1 5.37

Japanese larch forest Japanese larch (Larix leptolepis) 264.5 1.64

Planted pitch pine forest Pitch pine (Pinus rigida) 32.1 0.20

Japanese red pine forest Japanese red pine (Pinus densiflora) 10 778.04 66.73

Agricultural land Cropland 108.1 0.67

Open and other Open fields and areas with buildings 668.2 4.14

Total 16,151 100.0

Fig. 1. Location of the study site (a), topography at the site (b), delta Normalized Burn Ratio (dNBR) values pre- and post-fire (c), and forest cover with a 1-km grid (d).
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Table 2
Burn severity classes in the study area determined using delta Normalized Burn

Ratio (dNBR) values.

Severity Intervalsa Thresholdb Damaged

area (ha)c

Percentage

(%)

Unburned x < m � 2d 76 93 0.6

Low m � 2d � x <m � 1d 114 811 5.0

Moderate m � 1d � x <m 152 4743 29.3

High x 190 5421 33.5

Very high m � x <m + 1d 228 3894 24.0

Extreme m + 1d � x <m + 2d 255 1238 7.6

a x = observed dNBR value, m (mean) = 171.1, and d (standard deviation) = 37.99.
b A distinct value of dNBR at which the upper interval and lower interval are split,

ranging from 1 through 255.
c Total damaged area is 16,201 ha.
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based on study objectives and the literature (e.g., Lee et al., 2008b;
Lloret et al., 2002; McGarigal and Marks, 1995; Ryu et al., 2007).
Selected spatial metrics include the largest patch index (LPI), patch
density (PD), mean shape index (MSI), area-weighted shape index
(AWMSI), Shannon’s diversity index (SHDI), mean Euclidean
neighborhood distance (ENNMN), aggregation index (AI), and
the simple proportion of each forest cover type. All are available on
both the landscape and class levels except for SHDI. The selected
spatial metrics can be classified into fragmentation, size variability,
patch distance, diversity, and proportion. On a broad level, all of the
selected forest characteristics have been shown to be important for
diverse aspects of forest ecological function such as habitat, soil
erosion, energy flow, and metapopulation dynamics (Forman,
1995; Turner et al., 2001). Selected forest characteristics are also
important in identifying the spatial patterns of the fuelbed (Kerby
et al., 2007). The selected spatial metrics are believed to represent
the forest characteristics that are most important to ecological
function and burn severity, based on the study purposes, the
literature, and definition of the metrics. Additionally, two
topographic variables (mean slope and mean elevation) for each
grid cell were calculated and associated with burn severity.

2.3. Mapping burn severity

We use the term ‘‘burn severity’’ to refer to the degree of
environmental changes caused by fire (Key and Benson, 2006;
Lentile et al., 2006; Morgan et al., 2001). Numerous environmental
components, including physical and chemical changes to the soil,
conversion of vegetation and fuels to inorganic carbon, and
structural or compositional transformations, may be used to
indicate severity. Previous remote sensing studies have found burn
severity to be related to vegetation consumption (Conard et al.,
2002; Miller and Yool, 2002; Zhang et al., 2003) and changes in
surface reflectance (Key and Benson, 2002; White et al., 1996). The
term ‘‘fire severity’’ has been used interchangeably with ‘‘burn
severity’’ in many studies (Key and Benson, 2006; Lentile et al.,
2006). According to Lentile et al. (2006), fire severity ‘‘integrates
active fire characteristics and immediate post-fire effects on the
local environment,’’ while burn severity ‘‘incorporates both short-
and long-term post-fire effects on the local and regional
environments.’’ Thus fire severity emphasizes more specific
temporal and spatial effects of the fire than does burn severity.
In this paper, we simply adopt the term ‘‘burn severity’’ to reinforce
the notion of vegetation changes and to maintain consistency with
the Normalized Burn Index (NBR, Key and Benson, 2006) developed
to measure severity using satellite images.

To adequately characterize the spatial pattern of a large fire,
massive amounts of spatial information are needed. Remote
sensing appears to be an effective tool for the characterization of
the effects of fire (Key and Benson, 2002). Burn severity can be
derived from the spectral signature following the fire (Wimberly
and Reilly, 2007), and a burn severity map can provide crucial
information about fire effects. In many studies, Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapper (ETM+) have been
very effective in delineating the pattern of burn severity (e.g.,
Collins et al., 2007; Kushla and Ripple, 1998; Turner and Romme,
1994). A single remote sensing image taken soon after a fire is
sometimes sufficient for mapping burn severity. However, multi-
date imagery is more beneficial in mapping burn severity as it can
account for both the pre- and post-fire condition of the damaged
forests (Wimberly and Reilly, 2007). Although there is some
criticism regarding its ability to delineate burn severity (Roy et al.,
2006), the delta Normalized Burn Ratio (dNBR) is particularly
promising for mapping burn severity in different forest types and
geographical locations (e.g., Cocke et al., 2005; Collins et al., 2007;
Wimberly and Reilly, 2007). The dNBR is derived from different
reflectances in bands 4 and 7 in pre- and post-fire Landsat imagery.
The NBR is defined as (band 4 � band 7)/(band 4 + band 7) and the
dNBR representing burn severity is defined as the difference
between the NBRpre-fire and the NBRpost-fire. NBR values range
between �1 and +1, while dNBR ranges between �2 and +2.
Previous studies have found a strong correlation between ground-
based data and the dNBR derived from satellite imagery (Epting
et al., 2005; Roy et al., 2006; van Wagtendonk et al., 2004). The
delta Normalized Difference Vegetation Index (dNDVI) derived
using band 4 and 5 data is a similar index to dNBR and has also
been widely used to map burn severity. Studies have shown,
however, that dNBR results are a better fit (Key and Benson, 2006;
Lentile et al., 2006; van Wagtendonk et al., 2004).

The burn severity of the study area was mapped using dNBR
values derived from two Landsat multi-spectral images with 30-m
resolution. The images were taken on 7 May 1999 and 5 May 2000
to capture pre- and post-fire landscape structure. The dNBR values
ranging from�2 through +2 were converted to 1 through 255, and
then the dNBR values were classified into six categories: extreme,
very high, high, moderate, low, and unburned (Table 2, Fig. 1c,
RSAC, 2005). The dNBR map (Fig. 1c) shows that about 65% of the
area was severely damaged (high to extreme), particularly on the
eastern side of the area, while the western side was relatively less
damaged.

A few previous studies have used NBR methods to examine
forest fires in Korea (Lee et al., 2008a; Won et al., 2008). The results
of those studies and others indicated that NBR derived from
satellite imagery could capture the burn severity of forests in
Korea, as well as elsewhere (Epting et al., 2005; Rogan and Yool,
2001; Roy et al., 2006). In this study, we collected field assessment
data for burn severity from 30 plots in the burned areas; after
elimination of incomplete data, 20 field assessments remained.
Because the Composite Burn Index (CBI; Key and Benson, 2002,
2006) was released after this fire event, the field assessment used
here did not exactly follow the CBI method. The data for the 25 field
assessments were used to validate the dNBR. We selected 25 plots,
30 m � 30 m in size, from a random sample of homogeneous areas
within the dNBR classification. The field survey method simply
assessed the burn severity based mainly on the consumptions of
litter, duff, shrubs, and intermediate and tall trees. The field-
assessed burn severity was classified into three categories of low,
moderate, and high severity. In low severity (surface fire) plots, fire
consumed only light fuels including litter, small dead branches, or
ground covers, with scorching of the crowns of medium-sized
trees. In areas of moderate severity, some fuels remained on the
forest floor and there was mortality of small trees with scorching of
the crowns of large trees. High severity (crown fire) was typified by
nearly complete combustion of all litter, duff, and small logs,
mortality of small trees, and consumption of large tree crowns. The
severity classes were then encoded as 1 (low severity), 2 (moderate
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severity), and 3 (high severity) to validate the dNBR. Although 25 is
not a sufficient number of field assessments, correlation analysis
indicated that dNBR was able to capture the burn severity
effectively in the study areas (r = 0.832, p < 0.01).

We used a 1-km grid as the base unit for the analysis of the
relationship between burn severity and landscape structure and
the analysis of topographic characteristics. We arranged 2321-km
grids covering the entire damaged area (Fig. 1b). This grid size has
been shown to be effective in delineating the spatial pattern of
burn severity (e.g., Lloret et al., 2002). We computed the mean burn
severity for each 1-km grid and associated this mean with
elevation, slope, and a few selected spatial pattern metrics within
the same grid.

2.4. Analysis of spatial database

In our analysis, we investigated the possible relationships of
burn severity with landscape metrics, as well as elevation and
slope. We employed Pearson correlation analysis to gain an
overview of the general relationships among variables. However,
many previous studies have reported spatial autocorrelation
problems in dealing with burn severity (Collins et al., 2007;
Haining, 2003; Lloret et al., 2002; Wimberly and Reilly, 2007).
Neighboring pixels may have similar values for burn severity due
to similarities in climate, topography, or other spatially dependent
factors (Lloret et al., 2002). Typical correlation analysis cannot
exclude the inherent spatial autocorrelation problems of spatial
datasets. According to Collins et al. (2007), one possible way to
avoid such spatial autocorrelation issues is to perform the analysis
on a subset of the data that are separated by a distance greater than
the range of similarity in observed values. A semivariogram
analysis on a reclassified dNBR map of the study area indicated that
the effective distance of spatial autocorrelation for burn severity in
the Samchuck area was 690 m. However, a subset of data separated
by 690 m (i.e., by 1 grid cell) from all neighborhood grids allowed
only 53 observations, or one-third of all observations. Another way
to handle the spatial autocorrelation problem is to use regression
trees (Calbk et al., 2002; Collins et al., 2007). Regression tree
analysis has been demonstrated to effectively model correlative
relationships even if autocorrelation is present in the dataset
Table 3
Descriptive statistics of selected variables.

Variables Min.

Burn severity 2.1

Composition (forest cover area) CF (m2) 0.0

BF (m2) 0.0

MF (m2) 0.0

PJP (m2) 0.0

PKWP (m2) 0.0

PJL (m2) 0.0

PPP (m2) 0.0

JP (m2) 0.0

AL (m2) 0.0

OO (m2) 0.0

Topography Elevation (m) 25.6

Slope (%) 6.4

Configuration PD (L/P/M)a 1.0/1.0/1.0

LPI (L/P/M) 22.4/0.09/0.3

MSI (L/P/M) 1.0/1.0/1.0

AWMSI (L/P/M) 1.0/1.0/1.0

ENNMN(L/P/M) 0.0/60/60

AI 83/63/67

SHDI 0.0

CF: coniferous forest, BF: broad-leaved forest, MF: mixed forest, PJP: planted Japanese re

pitch pine, JP: Japanese red pine, AL: agricultural land, and OO: open and other. PD: patc

mean shape index, ENNMN: Euclidean nearest neighborhood distance mean, AI: aggre
a L: landscape level (n = 232), P: pine tree forest (n = 230), and M: mixed forest (n =
(Calbk et al., 2002), and the results of regression trees are easy to
interpret (Collins et al., 2007). Compared with conventional
generalized linear models, regression trees provide better predic-
tions because they are well suited for analysis of complex
ecological data that may include lack of balance, missing values,
non-linear relationships between variables, and high-order inter-
actions (Breiman et al., 1984; De’ath, 2002; De’ath and Fabricius,
2000; Ripley, 1996). In the model, a tree is grown by repeated
binary splitting of the data. Each split is defined based on a single
explanatory variable, forming two nodes. Cross-validation is used
to select the tree size, with the chosen tree having the smallest
predicted mean square error (Breiman et al., 1984). This tree is
considered to be the best predictive tree (De’ath, 2002). In addition
to correlation analysis, therefore, we used regression tree analysis
to solve the spatial autocorrelation problems inherent in the
dataset and to keep the maximum number of observations.

3. Results

3.1. Descriptive statistics

Table 3 lists the burn severity classes mapped after the
Samchuck fire. Severity ranged from low (surface fire) to moderate
(mixed surface fire and scorching) to high to extreme (stand-
replacing fire). The mean fire severity was 3.8 for 65% of the
classified area, representing high to extreme severity. The areas of
most forest cover types varied greatly from grid to grid. Mixed
forest, planted Korean white pine forest, and Japanese red pine
forest showed especially large standard deviations, while mixed
coniferous forest and planted Japanese red pine forest showed
relatively small standard deviations, with relatively small occupied
areas of 38.79 and 11.6 m2, respectively. The mean occupied area of
mixed forest and Japanese red pine was 128,308.2 m2 and
464,628.9 m2 within a grid, respectively. The mean elevation
was 257 m and the maximum elevation of the site was 840 m. The
slope analysis suggested that the study area is hilly (with a mean
slope of 21.4%).

All selected spatial pattern metrics were measured at both the
landscape and class level. Preliminary analysis, however, indicated
that only pine and mixed forest exhibited significant relationships
Max. Mean Std. Dev.

5.4 3.8 0.5

9000 38.79 590

530,000 19,000 75,000

892,000 128,000 214,000

20,700 11.0 177

864,000 37,000 109,000

522,000 11,000 52,000

141,000 1000 11,000

1040,000 464,000 334,000

143,000 4000 15,000

417,000 28,000 53,000

840.2 257.0 206.6

31.5 21.4 4.94

15.3/10.2/7.1 6.5/2.6/2.1 3.3/1.7/1.4

100/100/100 68.2/49.8/31.7 20.7/32.4/27.6

2.3/3.2/3.0 1.4/1.4/1.5 0.2/0.3/0.3

3.6/4.1/3.0 1.7/1.6/1.6 0.4/0.4/0.4

690.0/1050/918 139.7/142.3/186.7 114.5/114.2/155.5

100/100/100 94.4/93.2/91.5 3.6/5.8/7.2

1.3 0.6 0.3

d pine, PKWP: planted Korean white pine, PJL: planted Japanese larch, PPP: planted

h density, LPI: largest patch index, MSI: mean shape index, AWMSI: area-weighted

gation index, SHDI: Shannon’s diversity index.

115).
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with burn severity and spatial pattern metrics at the class level.
Patch density (PD) measures the number of patches including all
forest cover types per 100 ha. The mean number of forest cover
patches in a grid was 6.5, and the standard deviation of PD was 3.3
at the landscape level. The mean PD for pine and mixed forests was
somewhat smaller, 2.6 and 2.1, respectively. The mean percent of a
grid that the largest forest cover patch comprises (i.e., LPI) was 68.2
at the landscape level, and pine forest and mixed forest showed
smaller mean LPI values (49.8 and 31.7, respectively). Some grids
had only a single large forest cover patch (i.e., LPI = 100) at both the
landscape and class level. The shape index is the simplest and
perhaps the most straightforward measure of overall shape
complexity. The MSI equals 1 when the patch is maximally
compact (McGarigal and Marks, 1995). The mean and minimum
shape indices of the area at the landscape level were 1.4 and 1.0,
respectively, indicating that forest cover patches in the study area
were relatively simple. Mixed forest had a slightly higher MSI (1.5)
than pine forest (1.4). The area-weighted mean shape index (1.7) at
the landscape level was slightly higher than the simple mean shape
index (1.4), suggesting that larger forest cover patches are only
slightly more complex than small forest cover patches. The
ENNMN of the same forest cover type patches was 139.7 m, with a
very large standard deviation (114.5 m) at the landscape level.
Mixed forests had more distance between patches (186.7 m)
compared to pine forests (142.3 m). SHDI measures the proportion
of the grid occupied by forest cover patch types and is available
only at the landscape level. Considering that SHDI can theoretically
range from 0 (i.e., no diversity) with no upper limit, the mean SHDI
in the study area (0.6) suggests that the forest in the study area was
relatively homogeneous.

3.2. Effects of forest cover composition and topography on

burn severity

Burn severity was negatively correlated with grid topographic
characteristics including elevation (r = �0.36) and slope
(r = �0.14) in Table 4. Specifically, burn severity was more likely
to be low if elevation or slope was high. Some forest cover types
also had significant relationships with burn severity. In particular,
Japanese red pine was positively correlated with, and mixed forest
was negatively related to, burn severity (r = 0.58 and �0.25,
respectively). Thus, fire is more likely to be severe if an area
contains more Japanese red pine. Fire is likely to be less severe if an
area includes more mixed forest. Other forest cover types including
coniferous, broad-leaved, planted Japanese red pine, Korean white
pine, Japanese larch, pitch pine, and agricultural lands had
Table 4
Pearson correlation analysis between forest cover and topography and burn severity.

BSa Elev. Slope CF BF MF

Elev. �0.36**

Slope �0.14* 0.67**

CF �0.01 �0.01 0.01

BF �0.07 0.35** 0.29** 0.01

MF �0.25** 0.61** 0.45** �0.03 0.22**

PJP �0.06 0.02 0.10 �0.01 �0.01 �0

PKWP �0.11 0.39** 0.32** �0.02 �0.11 0

PJL 0.03 0.19** 0.15* �0.01 �0.04 0

PPP 0.06 0.01 0.06 �0.01 �0.02 0

JP 0.58** �0.29** �0.08 �0.10 0.10 �0

AL �0.04 �0.01 0.12 �0.05 0.05 0

OO 0.23* �0.37** �0.42** �0.03 0.03 �0

n = 232. CF: coniferous forest, BF: broad-leaved forest, MF: mixed forest, PJP: planted Jap

planted pitch pine, JP: Japanese red pine, AL: agricultural land, and OO: open and othe
a Burn severity.
* p < 0.05.
** p < 0.01.
insignificant relationships with burn severity. This select relation-
ship between many fire characteristics, including burn severity
and fire behavior, and certain forest cover types has been reported
in previous studies suggesting that fire size is significantly tied to
land-cover types (Bajocco and Ricotta, 2008; Gustafson et al., 2004;
Moreira et al., 2001; Ryu et al., 2007). Recently, Nunes et al. (2005)
reported that fire spread is very selective and that some land-cover
types effectively constrain fire spread over landscapes. Their data
suggest that shrub cover burns more readily, whereas agricultural
land and olive groves are mostly avoided. As reported elsewhere
(e.g., Cardille and Ventura, 2001; Ryu et al., 2007), certain tree
types such as pine, aspen, and birch showed the strongest
correlation with burn severity. A positive relationship (r = 0.67)
between slope and elevation indicated that uplands are steeper
than lowlands. More broad-leaved forest (r = 0.35), mixed forest
(r = 0.61), Korean white pine (r = 0.39), and Japanese larch
(r = 0.19) occurred in uplands, whereas red pines (r = �0.29) were
located in lowland areas. Similarly, broad-leaved forest (r = 0.29),
mixed forest (r = 0.45), Korean white pine (r = 0.32), and Japanese
larch (r = 0.15) were present in steeper areas. Mixed forest cover
was more likely to be present if the topography was steep in
upland areas. Mixed forest cover occupied areas neighboring
Korean white pine (r = 0.17) and Japanese larch (r = 0.22) but was
not found in areas neighboring red pine (r = �0.39). In general
more upland mixed forests were expected in areas of high
elevation and steep slope in the Samchuck area. These forests tend
to burn at low severity. In contrast, Japanese red pines were more
common in the lowlands, and severe ecological effects are
expected when red pine burns. In terms of the strength of
correlations with burn severity, the area of Japanese red pine cover
appeared to be the most significant variable, followed by elevation,
area of mixed forest, and slope.

3.3. Effects of forest cover configuration on burn severity

The correlations between measured spatial pattern metrics and
burn severity at the landscape and class level shown in Table 5
indicate that the spatial pattern of forest cover prior to the fire
event was tied to burn severity. Specifically, at the landscape level,
burn severity was negatively correlated with PD (r = �0.14),
ENNMN (r = �0.18), and SHDI (r = �0.23) and positively correlated
with LPI (r = 0.14). However, MSI, a measure of shape complexity of
forest cover patches, was not related to burn severity at the
landscape level. Similar patterns were observed at the class level in
pine forest. For example, burn severity was negatively related with
ENNMN (r = �0.26) and positively related with LPI (r = 0.23) and AI
PJP PKWP PJL PPP JP AL

.01

.17** �0.01

.22** �0.01 �0.03

.03 �0.01 �0.03 �0.01

.39** �0.06 �0.20** �0.09 �0.01

.05 �0.02 0.05 �0.03 �0.03 0.07

.19** �0.03 �0.15* �0.11 0.02 0.08 �0.04

anese red pine, PKWP: planted Korean white pine, PJL: planted Japanese larch, PPP:

r.



Table 5
Pearson correlation analysis of spatial pattern metrics of pre-fire forest cover types

with burn severity at the landscape and class levels.

Spatial pattern

metrics

Correlation

coefficient

Landscape levela PD �0.14*

LPI 0.14*

MSI 0.04

AWMSI �0.01

ENNMN �0.18*

AI �0.04

SHDI �0.23**

Class level (pine tree cover)b PD �0.03

LPI 0.46**

MSI �0.07

AWMSI �0.01

AI 0.29**

ENNMN �0.26**

Class level (mixed forest cover)c PD �0.03

LPI �0.44**

MSI �0.05

AWMSI �0.11*

AI �0.13*

ENNMN �0.10

PD: patch density, LPI: largest patch index, MSI: mean shape index, AWMSI: area-

weighted mean shape index, ENNMN: Euclidean nearest neighborhood distance

mean, AI: aggregation index, SHDI: Shannon’s diversity index.
a n = 232.
b n = 230.
c n = 115.
* p < 0.05.
** p < 0.01.
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(r = 0.29) in areas with pine forest cover. The relationship among
PD, MSI, and AWMSI of pine tree forest cover was not significantly
correlated with burn severity. In contrast, LPI of mixed forest cover
was negatively related to burn severity (r = �0.44). Overall, burn
severity is more likely to be low if forests are patchy with diverse
tree cover. Conversely, burn severity is more likely to be high when
forests are occupied by a few large patches located close together.
Small patches of mixed species forests are more likely to burn with
low severity while large patches of pine forests are more likely to
burn with severe effects.
Fig. 2. Regression tree explaining the spatial distribution of burn severity in the study ar

burn severity variance. The number of observations and the mean burn severity in eac
3.4. Regression tree analysis

Regression tree analysis at the landscape level indicated that
the area of Japanese pines within a grid was the most significant
variable explaining burn severity (Fig. 2). The area of Japanese red
pine trees was split at 36.1 ha into two groups in the regression
tree. In the regression tree, the<36.1 ha group was associated with
lower burn severity while the >36.1 ha group was associated with
higher burn severity. Elevation was the second most important
factor explaining burn severity for areas of Japanese red pine
<36.1 ha (left side of the tree). Higher elevation (>699 m) was
associated with lower burn severity. In areas of Japanese red pine
>36.1 ha, AWMSI appeared to be the second most important
variable explaining burn severity (right side of the tree). Complex
large forest patches were associated with lower burn severity.
Regardless of elevation, SHDI was the third most important
variable on the left side of the regression tree, while slope appeared
to be the third most important factor explaining burn severity on
the right side of the tree. Although some variables did not appear in
the regression trees, the overall order of relative importance to
burn severity at the landscape level was as follows: area of
Japanese red pines > elevation > area of mixed forests > slo-
slope > AWMSI > SHDI > LPI. Overall, most variance in burn
severity was explained by forest composition and topography,
while a relatively small proportion of the burn severity variance
was explained by forest configuration at the landscape level. The R2

of the regression tree model at the landscape level was 49.8%, and
the mean standard error was 0.16.

Fig. 3 presents regression trees for both Japanese red pine
forests and mixed forests at the class level. In the regression trees
for Japanese red pine forests, a large proportion of burn severity
variance was explained by LPI at the class level. Higher burn
severity was associated with the high LPI value (>28.2) of Japanese
red pine forests, which is consistent with regression trees at the
landscape level (Fig. 2). The aggregation index of Japanese red pine
forests appeared to be the second most important factor explaining
the variance of burn severity. When LPI of Japanese red pine forests
was greater than 28.2, a high value of the aggregation index was
related to high burn severity. Although some variables did not
appear in the regression trees, the overall order of relative
importance to burn severity at the class level was as follows:
eas at the landscape level. Variables in higher nodes explain a greater proportion of

h group are reported for each node.



Fig. 3. Regression trees for Japanese red pine forests (a) and mixed forests (b) at the

class level. In both regression trees, LPI is the most significant variable explaining

burn severity at the class level.
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largest patch index > aggregation index > Euclidian nearest
neighborhood distance > patch density of Japanese red pine
forests. The regression trees for mixed forests in Fig. 3b show
that the only effective variable was LPI. A small LPI value for mixed
forests was tied to a high value of burn severity. The order of
relative importance to burn severity at the class level was largest
patch index > mean shape index > area-weighted mean shape
index > Euclidian nearest neighborhood distance of mixed forest.
The R2 values and mean standard errors of regression trees for
Fig. 4. The relationships of elevation
Japanese red pine forests and mixed forests were 21.71% and 14.9%
and 0.26 and 0.28, respectively.

4. Discussion

The spatial heterogeneity of forests has a significant impact on
burn severity. The present study demonstrated that topographic
characteristics, forest composition, and forest configuration have
significant relationships with burn severity. Forest heterogeneity
was shown to be associated with low burn severity. The present
results also confirmed the findings of previous studies that have
suggested a strong tie between forest heterogeneity and fire
characteristics including the behavior, spread, severity, number,
and size of fires (Duguy, 1998; Farina, 1998; Li and Wu, 2004; Ryu
et al., 2007; Stephens, 2001).

Correlation analysis of elevation and slope with burn severity
indicated that both are negatively related to burn severity.
However, scatter plots of elevation and slope versus burn severity
suggest that a non-linear relationship may exist between them.
Estimated quadratic models of both slope and elevation were
better than linear models at explaining the variances of burn
severity (Fig. 4, Table 6). Other studies have reported non-linear
relationships between topographic characteristics and burn
severity (González et al., 2005; Schoenberg et al., 2003). As shown
in Fig. 4, burn severity increased with slope in the range of 0–18.4%,
beyond which burn severity decreased with slope. A similar
relationship was found between elevation and burn severity. Burn
severity increased between 0 and 241.6 m but decreased at
elevations above 241.6 m.

It is not clear why slope and elevation exhibit non-linear
relationships with burn severity. Possible explanations include
differences in fuel moisture, temperature, precipitation, canopy bulk
density (González et al., 2005; Hall and Burke, 2006; Van Wagner,
1977), and the compounding effects of fuels. Additionally, the
chimney effect (Pyne et al., 1996) and water potential (Foster, 1983)
might play important roles in the relationships between fire spread
and topography. A topographic chimney is formed from a steep
narrow chute with three walls. The chimney effect occurs when
unstable air conditions at the surface create a convection current
through the chimney area, drawing air in at the base and exhausting
it at the top. Normal upslope air flow becomes rapid and funnels into
the chimney (Dickinson and Johnson, 2001; Pyne et al., 1996).
and slope with burn severity.



Table 6
Estimated linear and quadric models of elevation and slope.

Model R-square F-value b0 b1 b2

Elevation Linear 0.12 33.54** 4.11 �0.001 –

Quadric 0.29 47.59** 3.70 �0.0029 �6.E�06

Slope Linear 0.01 4.60* 4.20 �0.0161 –

Quadric 0.05 6.71** 2.73 �0.1362 �0.0037

d.f. = 231.
* p < 0.05.
** p < 0.01.
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The findings of this study reveal only a small part of the
complex relationships between topology and burn severity, and
large aspects of the relationships remain unresolved. Notably, a
negative relationship (r = �0.29) was found between the area of
red pine and elevation. Japanese red pines are more likely to be
present at lower elevation and scarce at higher elevations. The
results of regression tree analysis suggest that the most significant
factor explaining the variance of burn severity was the area of red
pine forest patches at the landscape level. From the results of
correlation analysis between elevation and area of red pines as well
as the regression tree analysis, a reasonable explanation for the
non-linear relationship between topology and burn severity might
be that red pines are quite susceptible to fire and this susceptibility
overrides the influence of topology. Fuel moisture, fuel loads, and
the bulk crown density tend to vary with elevation in non-linear
patterns (Miller and Urban, 2000).

The results of this study also suggest that burn severity in
Samchuck, Korea, depends on forest cover type, similar to the
selective effects of forest composition on burn severity reported
from many other geographic locations (e.g., Bigler et al., 2005;
Collins et al., 2007; Lloret et al., 2002; Nunes et al., 2005; Ryu et al.,
2007; Wimberly and Reilly, 2007). In the present study, burn
severity was positively correlated with the area of pine cover and
negatively related to the area of mixed forest cover. In general, pine
forests are positively associated with fire spread, ignition, and
severity due to their susceptibility to fire (Bigler et al., 2005;
Cardille and Ventura, 2001; Collins et al., 2007; Nunes et al., 2005;
Ryu et al., 2007). The results of regression tree analysis also
strongly support the susceptibility of red pines to fire. Further-
more, this study supports previous observations that have
suggested a negative relationship between mixed forest cover
and fire spread and severity (Ryu et al., 2007). The negative
relationship between SHDI and burn severity in this study strongly
suggests that homogenization of forest composition may increase
burn severity, again confirming previous findings (Lloret et al.,
2002). Regression tree analysis at the landscape level also showed
that the compositional heterogeneity (i.e., SHDI) and shape
complexity of large forest patches (i.e., AWMSI) impact burn
severity. Presumably, forests dominated by one to a few types of
tree cover, particularly pine, are more susceptible to fire than
forests consisting of many different tree covers. However, it is
noteworthy that the effects of compositional homogeneity are
significantly reduced for very large catastrophic fires usually
driven by weather conditions (Bajocco and Ricotta, 2008; Nunes
et al., 2005). The results of the present study and others noted
above strongly suggest that compositional heterogeneity is a key
factor in managing and restoring forests that are resilient to small
or less intensive fires.

Configuration of forest patches was strongly tied to burn
severity in the Samchuck area at both the landscape and class level.
Results of correlation analysis indicated that PD, patch size, and
distance appeared to be particularly important variables in
explaining burn severity at the landscape level. This confirms
previous findings that have suggested a strong tie between
fragmented forests and less severe fire damage (e.g., Lloret
et al., 2002; Ryu et al., 2007). In regression trees, landscape
heterogeneity appeared as an important factor explaining burn
severity, especially for forests with less red pine. The shape
complexity of forest cover patches was also an important variable
in regression trees when there was larger coverage by red pines.

However, correlation analysis at the class level showed a
somewhat different relationship with burn severity depending on
forest cover types. Specifically, burn severity was positively tied to
LPI and AI and negatively correlated with the patch distance of pine
tree patches. Regression trees for Japanese red pines suggested that
LPI was the most significant variable explaining burn severity,
while AI was the second. The spatial metrics of mixed forest cover
exhibited a somewhat different relationship with burn severity. LPI
of mixed forest cover had a negative relationship with burn
severity. Regression tree analysis provided consistent results. In
the mixed forest regression trees, only LPI made a significant
contribution to burn severity.

Consistent with the above results, the sizes of both pine and
mixed forest cover patches were key factors in understanding burn
severity. This is quite interesting, as most previous studies have
investigated the relationship between forest heterogeneity and
burn severity at the landscape level. The spatial pattern of forest
cover may function differently with regard to burn severity
depending on the fire susceptibility of different forest cover types.

5. Conclusions

This study measured the heterogeneity in both composition and
configuration of forests at the landscape and class level in
Samchuck, Korea and related them to burn severity with dNBR
derived from satellite images taken pre- and post-fire in 1999 and
2000. The results confirm the findings of previous studies dealing
with landscape structure and fire spread and severity (Li and Wu,
2004; Stephens, 2001). The present findings highlight the relation-
ship between forest heterogeneity and burn severity. Both the
composition and configuration of forest cover are strongly tied to
burn severity. Specifically, burn severity is very dependent on
forest cover type. Pine forest cover results in high severity, whereas
mixed forest does not. Also, burn severity is sensitive to the
configuration of forest cover patches. Patch density, distance
among patches, and shape complexity of large patches are
particularly important characteristics of spatial configuration.
However, spatial configuration may result in different effects on
burn severity depending on the susceptibility of cover type to fire.
Both elevation and slope had significant non-linear relationships
with burn severity, possibly due to local climate and weather
conditions. To improve fire prevention and resilience, forest
managers and agencies need to consider both the composition
and configuration of forest cover, and recognize the important
differences among forest cover types. By enhancing the hetero-
geneity of forests, burn severity may be substantially reduced.

Fuel treatments must also be considered in managing fire-
resilient forests (Agee and Skinner, 2005; Finney, 2001; Schmidt
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et al., 2008; Stephens and Ruth, 2005). Although fuel treatments
will not necessarily be able to stop or eliminate all risks of damages
to natural and human resources (Finney and Cohen, 2003),
reducing fire severity may be best achieved by identifying
place-specific fuel treatments such as prescribed burning,
mechanical thinning, or a combination of the two (Arno and
Allison-Bunnell, 2002; Graham et al., 2004). Fuels are defined as
the physical characteristics of live and dead biomass that
contribute to the spread, intensity, and severity of forest fire
(Andrews and Queen, 2001; Burgan et al., 1998). Knowledge of the
spatial pattern of fuels is important to developing management
strategies for fire-resilient forests (Arroyo et al., 2008), and
manipulating the structure of forests in landscapes may reduce
fire risks by controlling fuel patterns to some extent. The amount
and continuity of live and dead vegetation limits fire spread and
severity (Green, 1983; Minnich et al., 2000; Rollins et al., 2002;
Turner and Romme, 1994) and the patterns of fuels depend in part
on forest composition and configuration. Applying fuel-reduction
treatments in individual stands without addressing the overall
spatial configuration may result in little change in the spread and
severity of fires at landscape scales (Gustafson et al., 2004). Thus,
the effectiveness of surface and canopy fuel treatments may be
enhanced by considering the landscape heterogeneity identified in
this study. However, such fuel treatments with considerations of
forest composition and configuration may be effective only under
moderate weather conditions (Bessie and Johnson, 1995; Turner
and Romme, 1994), because extreme temperature and wind speed
can override the influence of fuels (Schoennagel et al., 2004).

As discussed elsewhere (Collins et al., 2007), forest hetero-
geneity is not the primary factor affecting many fire characteristics,
including severity, frequency, and behavior, all of which are
affected by numerous factors, such as available fuels, weather, and
topography (Collins et al., 2007; Pyne et al., 1996; Rothermel,
1972). Our regression tree analysis results indicated that forest
composition, which is strongly tied to fuel types (Minnich et al.,
2000; Rollins et al., 2002), is a more significant factor explaining
fire severity than other factors such as topology and spatial
arrangement. However we were not able to integrate weather
conditions or fuels into the present analysis. Collins et al. (2007)
reported that weather conditions such as relative humidity,
temperature, and wind speed are the primary factors explaining
the distribution of dNBR. However, because our study was carried
out at one fire site, weather variables were assumed to be the same
across the damaged areas. We also could not examine fuels in the
present study because of a lack of sufficient field data regarding
pre-fire fuels at the study site. Integrating these variables with
forest structure might lead to better guidelines and management
plans for fire-resilient forests.

Despite numerous studies, including the present one, the
relationship between forest heterogeneity and burn severity
remains unclear because of the complex and dynamic interactions
among the relevant variables, such as topography, disturbance
history (Bigler et al., 2005), and weather conditions (Collins et al.,
2007; Pyne et al., 1996; Rothermel, 1972). Our study examined
only simple relationships between forest heterogeneity and burn
severity, not the interactions between variables or their combined
effects on burn severity. For example, non-linear relationships
between elevation and slope with burn severity were observed, but
it is not clear how these characteristics interact with forest
heterogeneity. Furthermore, do elevation and slope have direct and
indirect effects on burn severity through the shaping of landscape
structure? These interesting questions are beyond the scope of this
study and remain unanswered. Thus, a more sophisticated study
with a wider ranging data set including soils, weather, and climate
is needed to answer these questions. It is also important to note
that implementation of the findings of this study may be limited
because of the difficulty in applying the present results, based on
an analysis unit of 1 km, to the relationship between landscape
structure and burn severity on a larger scale.
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